
Poetry Merge Lock

Claudio Jolowicz

Dec 30, 2021





CONTENTS

1 Reference 1

2 Contributor Guide 5

3 Contributor Covenant Code of Conduct 7

4 MIT License 11

5 Installation 13

6 Usage 15

Python Module Index 17

Index 19

i



ii



CHAPTER

ONE

REFERENCE

• poetry_merge_lock.__main__

• poetry_merge_lock.core

• poetry_merge_lock.parser

• poetry_merge_lock.mergetool

1.1 poetry_merge_lock.__main__

Command-line interface.

1.2 poetry_merge_lock.core

Core module.

poetry_merge_lock.core.activate_dependencies(packages)
Activate the optional dependencies of every package.

Activating optional dependencies ensures their inclusion when the lock file is written. Normally, optional de-
pendencies are activated by the solver if another package depends on them. But invoking the solver would result
in regenerating the lock file from scratch, losing the information in the original lock file. So we activate the
dependencies manually instead. We know the solver would activate them because they would not be present in
the lock file otherwise.

Parameters packages (List[poetry.packages.package.Package]) – The list of
packages.

Return type None

poetry_merge_lock.core.load(locker)
Load a lock file with merge conflicts.

Parameters locker (poetry.packages.locker.Locker) – The locker object.

Returns The merged TOML document.

Return type tomlkit.toml_document.TOMLDocument

poetry_merge_lock.core.load_packages(locker, lock_data)
Load the packages from a TOML document with lock data.

1



Poetry Merge Lock

Parameters

• locker (poetry.packages.locker.Locker) – The locker object.

• lock_data (tomlkit.toml_document.TOMLDocument) – The lock data.

Returns The list of packages.

Return type List[poetry.packages.package.Package]

poetry_merge_lock.core.load_toml_versions(toml_file)
Load a pair of TOML documents from a TOML file with merge conflicts.

Parameters toml_file (pathlib.Path) – Path to the lock file.

Returns A pair of TOML documents, corresponding to our version and their version.

Return type Tuple[tomlkit.toml_document.TOMLDocument, tom-
lkit.toml_document.TOMLDocument]

poetry_merge_lock.core.merge_lock(poetry)
Resolve merge conflicts in Poetry’s lock file.

Parameters poetry (poetry.poetry.Poetry) –

Return type None

poetry_merge_lock.core.save(locker, lock_data, root)
Validate the lock data and write it to disk.

Parameters

• locker (poetry.packages.locker.Locker) – The locker object.

• lock_data (tomlkit.toml_document.TOMLDocument) – The lock data.

• root (poetry.packages.package.Package) – The root package of the Poetry
project.

Return type None

1.3 poetry_merge_lock.parser

Line-based parser for files with merge conflicts.

class poetry_merge_lock.parser.State(value)
Parser state for files with merge conflicts.

class poetry_merge_lock.parser.Token(value)
Token for parsing files with merge conflicts.

exception poetry_merge_lock.parser.UnexpectedTokenError(token)
The parser encountered an unexpected token.

Parameters token (poetry_merge_lock.parser.Token) –

Return type None

poetry_merge_lock.parser.parse(lines)
Parse a sequence of lines with merge conflicts.

Parameters lines (Sequence[str]) – The sequence of lines to be parsed.

Returns A pair of sequences of lines. The first sequence corresponds to our version, and the second,
to their version.

2 Chapter 1. Reference



Poetry Merge Lock

Return type Tuple[Sequence[str], Sequence[str]]

poetry_merge_lock.parser.parse_line(line, state)
Parse a single line in a file with merge conflicts.

Parameters

• line (str) – The line to be parsed.

• state (poetry_merge_lock.parser.State) – The current parser state.

Returns A pair, consisting of the token for the line, and the new parser state.

Raises UnexpectedTokenError – The parser encountered an unexpected token.

Return type Tuple[poetry_merge_lock.parser.Token, poetry_merge_lock.parser.State]

poetry_merge_lock.parser.parse_lines(lines)
Parse a sequence of lines with merge conflicts.

Parameters lines (Sequence[str]) – The sequence of lines to be parsed.

Yields Pairs, where first item in each pair is a line in our version, and the second, in their version.
An item is None if the line does not occur in that version.

Raises ValueError – A conflict marker was not terminated.

Return type Iterator[Tuple[Optional[str], Optional[str]]]

poetry_merge_lock.parser.tokenize(line)
Return the token for the line.

Parameters line (str) –

Return type poetry_merge_lock.parser.Token

1.4 poetry_merge_lock.mergetool

Merge tool for Poetry lock files at the TOML level.

exception poetry_merge_lock.mergetool.MergeConflictError(keys, ours, theirs)
An item in the TOML document cannot be merged.

Parameters

• keys (List[tomlkit.items.Key]) –

• ours (Any) –

• theirs (Any) –

Return type None

poetry_merge_lock.mergetool.merge(value, other)
Merge two versions of lock data.

This function returns a TOML document with the following merged entries:

• package

• metadata.files

Any other entries, e.g. metadata.content-hash, are omitted. They are generated from pyproject.toml
when the lock data is written to disk.

Parameters

1.4. poetry_merge_lock.mergetool 3



Poetry Merge Lock

• value (tomlkit.toml_document.TOMLDocument) – Our version of the lock data.

• other (tomlkit.toml_document.TOMLDocument) – Their version of the lock
data.

Returns The merged lock data.

Return type tomlkit.toml_document.TOMLDocument

poetry_merge_lock.mergetool.merge_locked_package_files(value, other)
Merge two TOML tables containing package files.

Parameters

• value (tomlkit.items.Table) – The package files in our version of the lock file.

• other (tomlkit.items.Table) – The package files in their version of the lock file.

Returns The package files obtained from merging both versions.

Raises MergeConflictError – The tables contain different files for the same package.

Return type tomlkit.items.Table

poetry_merge_lock.mergetool.merge_locked_packages(value, other)
Merge two TOML arrays containing locked packages.

Parameters

• value (List[tomlkit.items.Table]) – The packages in our version of the lock
file.

• other (List[tomlkit.items.Table]) – The packages in their version of the lock
file.

Returns The packages obtained from merging both versions.

Raises MergeConflictError – The lists contain different values for the same package.

Return type List[tomlkit.items.Table]

4 Chapter 1. Reference



CHAPTER

TWO

CONTRIBUTOR GUIDE

Thank you for your interest in improving this project. This project is open-source under the MIT license and welcomes
contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

• Source Code

• Documentation

• Issue Tracker

• Code of Conduct

2.1 How to report a bug

Report bugs on the Issue Tracker.

When filing an issue, make sure to answer these questions:

• Which operating system and Python version are you using?

• Which version of this project are you using?

• What did you do?

• What did you expect to see?

• What did you see instead?

The best way to get your bug fixed is to provide a test case, and/or steps to reproduce the issue.

2.2 How to request a feature

Request features on the Issue Tracker.

5

https://opensource.org/licenses/MIT
https://github.com/cjolowicz/poetry-merge-lock
https://poetry-merge-lock.readthedocs.io/
https://github.com/cjolowicz/poetry-merge-lock/issues
https://poetry-merge-lock.readthedocs.io/codeofconduct.html
https://github.com/cjolowicz/poetry-merge-lock/issues
https://github.com/cjolowicz/poetry-merge-lock/issues


Poetry Merge Lock

2.3 How to set up your development environment

You need Python 3.6+ and the following tools:

• Poetry

• Nox

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session, or the command-line interface:

$ poetry run python
$ poetry run poetry-merge-lock

2.4 How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session. For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory, and are written using the pytest testing framework.

2.5 How to submit changes

Open a pull request to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

• The Nox test suite must pass without errors and warnings.

• Include unit tests. This project maintains 100% code coverage.

• If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

You can ensure that your changes adhere to the code style by reformatting with Black:

$ nox --session=black

It is recommended to open an issue before starting work on anything. This will allow a chance to talk it over with the
owners and validate your approach.

6 Chapter 2. Contributor Guide

https://python-poetry.org/
https://nox.thea.codes/
https://pytest.readthedocs.io/
https://github.com/cjolowicz/poetry-merge-lock/pulls
https://black.readthedocs.io/


CHAPTER

THREE

CONTRIBUTOR COVENANT CODE OF CONDUCT

3.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion,
or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

3.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

7



Poetry Merge Lock

3.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki ed-
its, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for
moderation decisions when appropriate.

3.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially repre-
senting the community in public spaces. Examples of representing our community include using an official e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event.

3.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement at mail@claudiojolowicz.com. All complaints will be reviewed and investigated promptly and
fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

3.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

3.6.1 1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

3.6.2 2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

8 Chapter 3. Contributor Covenant Code of Conduct

mailto:mail@claudiojolowicz.com


Poetry Merge Lock

3.6.3 3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

3.6.4 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

3.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.
contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/
faq. Translations are available at https://www.contributor-covenant.org/translations.

3.7. Attribution 9

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations


Poetry Merge Lock

10 Chapter 3. Contributor Covenant Code of Conduct



CHAPTER

FOUR

MIT LICENSE

Copyright © 2020 Claudio Jolowicz

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

The software is provided “as is”, without warranty of any kind, express or implied, including but not limited
to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of
contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings
in the software.

This is a tool for resolving merge conflicts in the lock file of Poetry, a packaging and dependency manager for Python.
If the merge conflicts cannot be resolved by this tool, you can use the --print-content-hash option to compute
the content hash for the metadata.content-hash entry, and resolve the conflicts manually.

11

https://github.com/cjolowicz/poetry-merge-lock/actions?workflow=Tests
https://codecov.io/gh/cjolowicz/poetry-merge-lock
https://pypi.org/project/poetry-merge-lock/
https://pypi.org/project/poetry-merge-lock
https://poetry-merge-lock.readthedocs.io/
https://opensource.org/licenses/MIT
https://github.com/cjolowicz/poetry-merge-lock/actions?workflow=Tests
https://codecov.io/gh/cjolowicz/poetry-merge-lock
https://pypi.org/project/poetry-merge-lock/
https://pypi.org/project/poetry-merge-lock
https://poetry-merge-lock.readthedocs.io/
https://opensource.org/licenses/MIT
http://python-poetry.org/


Poetry Merge Lock

12 Chapter 4. MIT License



CHAPTER

FIVE

INSTALLATION

To install poetry-merge-lock, run this command in your terminal:

$ pip install poetry-merge-lock

13



Poetry Merge Lock

14 Chapter 5. Installation



CHAPTER

SIX

USAGE

poetry-merge-lock’s usage looks like:

$ poetry-merge-lock [OPTIONS]

--print-content-hash
Print the content hash (metadata.content-hash).

--version
Display the version and exit.

--help
Display a short usage message and exit.

15



Poetry Merge Lock

16 Chapter 6. Usage



PYTHON MODULE INDEX

p
poetry_merge_lock.__main__, 1
poetry_merge_lock.core, 1
poetry_merge_lock.mergetool, 3
poetry_merge_lock.parser, 2

17



Poetry Merge Lock

18 Python Module Index



INDEX

Symbols
--help

command line option, 15
--print-content-hash

command line option, 15
--version

command line option, 15

A
activate_dependencies() (in module po-

etry_merge_lock.core), 1

C
command line option

--help, 15
--print-content-hash, 15
--version, 15

L
load() (in module poetry_merge_lock.core), 1
load_packages() (in module po-

etry_merge_lock.core), 1
load_toml_versions() (in module po-

etry_merge_lock.core), 2

M
merge() (in module poetry_merge_lock.mergetool), 3
merge_lock() (in module poetry_merge_lock.core), 2
merge_locked_package_files() (in module po-

etry_merge_lock.mergetool), 4
merge_locked_packages() (in module po-

etry_merge_lock.mergetool), 4
MergeConflictError, 3
module

poetry_merge_lock.__main__, 1
poetry_merge_lock.core, 1
poetry_merge_lock.mergetool, 3
poetry_merge_lock.parser, 2

P
parse() (in module poetry_merge_lock.parser), 2

parse_line() (in module poetry_merge_lock.parser),
3

parse_lines() (in module po-
etry_merge_lock.parser), 3

poetry_merge_lock.__main__
module, 1

poetry_merge_lock.core
module, 1

poetry_merge_lock.mergetool
module, 3

poetry_merge_lock.parser
module, 2

S
save() (in module poetry_merge_lock.core), 2
State (class in poetry_merge_lock.parser), 2

T
Token (class in poetry_merge_lock.parser), 2
tokenize() (in module poetry_merge_lock.parser), 3

U
UnexpectedTokenError, 2

19


	Reference
	Contributor Guide
	Contributor Covenant Code of Conduct
	MIT License
	Installation
	Usage
	Python Module Index
	Index

