

poetry-merge-lock

[image: Tests] [https://github.com/cjolowicz/poetry-merge-lock/actions?workflow=Tests] [image: Codecov] [https://codecov.io/gh/cjolowicz/poetry-merge-lock] [image: PyPI] [https://pypi.org/project/poetry-merge-lock/] [image: Python Version] [https://pypi.org/project/poetry-merge-lock] [image: Read the Docs] [https://poetry-merge-lock.readthedocs.io/] [image: License] [https://opensource.org/licenses/MIT] [image: Black] [https://github.com/psf/black] [image: pre-commit] [https://github.com/pre-commit/pre-commit] [image: Dependabot] [https://dependabot.com]

[image: Tests] [https://github.com/cjolowicz/poetry-merge-lock/actions?workflow=Tests] [image: Codecov] [https://codecov.io/gh/cjolowicz/poetry-merge-lock] [image: PyPI] [https://pypi.org/project/poetry-merge-lock/] [image: Python Version] [https://pypi.org/project/poetry-merge-lock] [image: Read the Docs] [https://poetry-merge-lock.readthedocs.io/] [image: License] [https://opensource.org/licenses/MIT] [image: Black] [https://github.com/psf/black] [image: pre-commit] [https://github.com/pre-commit/pre-commit] [image: Dependabot] [https://dependabot.com]

This is a tool for resolving merge conflicts in the lock file of Poetry [http://python-poetry.org/],
a packaging and dependency manager for Python.
If the merge conflicts cannot be resolved by this tool,
you can use the --print-content-hash option to
compute the content hash for the metadata.content-hash entry,
and resolve the conflicts manually.

Installation

To install poetry-merge-lock,
run this command in your terminal:

$ pip install poetry-merge-lock

Usage

poetry-merge-lock’s usage looks like:

$ poetry-merge-lock [OPTIONS]

	
--print-content-hash

	Print the content hash (metadata.content-hash).

	
--version

	Display the version and exit.

	
--help

	Display a short usage message and exit.

Reference

	poetry_merge_lock.__main__

	poetry_merge_lock.core

	poetry_merge_lock.parser

	poetry_merge_lock.mergetool

poetry_merge_lock.__main__

Command-line interface.

poetry_merge_lock.core

Core module.

	
poetry_merge_lock.core.activate_dependencies(packages)

	Activate the optional dependencies of every package.

Activating optional dependencies ensures their inclusion when the lock file
is written. Normally, optional dependencies are activated by the solver if
another package depends on them. But invoking the solver would result in
regenerating the lock file from scratch, losing the information in the
original lock file. So we activate the dependencies manually instead. We
know the solver would activate them because they would not be present in the
lock file otherwise.

	Parameters

	packages (List[poetry.packages.package.Package]) – The list of packages.

	Return type

	None

	
poetry_merge_lock.core.load(locker)

	Load a lock file with merge conflicts.

	Parameters

	locker (poetry.packages.locker.Locker) – The locker object.

	Returns

	The merged TOML document.

	Return type

	tomlkit.toml_document.TOMLDocument

	
poetry_merge_lock.core.load_packages(locker, lock_data)

	Load the packages from a TOML document with lock data.

	Parameters

	
	locker (poetry.packages.locker.Locker) – The locker object.

	lock_data (tomlkit.toml_document.TOMLDocument) – The lock data.

	Returns

	The list of packages.

	Return type

	List[poetry.packages.package.Package]

	
poetry_merge_lock.core.load_toml_versions(toml_file)

	Load a pair of TOML documents from a TOML file with merge conflicts.

	Parameters

	toml_file (pathlib.Path) – Path to the lock file.

	Returns

	A pair of TOML documents, corresponding to our version and their
version.

	Return type

	Tuple[tomlkit.toml_document.TOMLDocument, tomlkit.toml_document.TOMLDocument]

	
poetry_merge_lock.core.merge_lock(poetry)

	Resolve merge conflicts in Poetry’s lock file.

	Parameters

	poetry (poetry.poetry.Poetry) –

	Return type

	None

	
poetry_merge_lock.core.save(locker, lock_data, root)

	Validate the lock data and write it to disk.

	Parameters

	
	locker (poetry.packages.locker.Locker) – The locker object.

	lock_data (tomlkit.toml_document.TOMLDocument) – The lock data.

	root (poetry.packages.package.Package) – The root package of the Poetry project.

	Return type

	None

poetry_merge_lock.parser

Line-based parser for files with merge conflicts.

	
class poetry_merge_lock.parser.State(value)

	Parser state for files with merge conflicts.

	
class poetry_merge_lock.parser.Token(value)

	Token for parsing files with merge conflicts.

	
exception poetry_merge_lock.parser.UnexpectedTokenError(token)

	The parser encountered an unexpected token.

	Parameters

	token (poetry_merge_lock.parser.Token) –

	Return type

	None

	
poetry_merge_lock.parser.parse(lines)

	Parse a sequence of lines with merge conflicts.

	Parameters

	lines (Sequence[str]) – The sequence of lines to be parsed.

	Returns

	A pair of sequences of lines. The first sequence corresponds to our
version, and the second, to their version.

	Return type

	Tuple[Sequence[str], Sequence[str]]

	
poetry_merge_lock.parser.parse_line(line, state)

	Parse a single line in a file with merge conflicts.

	Parameters

	
	line (str) – The line to be parsed.

	state (poetry_merge_lock.parser.State) – The current parser state.

	Returns

	A pair, consisting of the token for the line, and the new parser state.

	Raises

	UnexpectedTokenError – The parser encountered an unexpected token.

	Return type

	Tuple[poetry_merge_lock.parser.Token, poetry_merge_lock.parser.State]

	
poetry_merge_lock.parser.parse_lines(lines)

	Parse a sequence of lines with merge conflicts.

	Parameters

	lines (Sequence[str]) – The sequence of lines to be parsed.

	Yields

	Pairs, where first item in each pair is a line in our version, and
the second, in their version. An item is None if the line does
not occur in that version.

	Raises

	ValueError – A conflict marker was not terminated.

	Return type

	Iterator[Tuple[Optional[str], Optional[str]]]

	
poetry_merge_lock.parser.tokenize(line)

	Return the token for the line.

	Parameters

	line (str) –

	Return type

	poetry_merge_lock.parser.Token

poetry_merge_lock.mergetool

Merge tool for Poetry lock files at the TOML level.

	
exception poetry_merge_lock.mergetool.MergeConflictError(keys, ours, theirs)

	An item in the TOML document cannot be merged.

	Parameters

	
	keys (List[tomlkit.items.Key]) –

	ours (Any) –

	theirs (Any) –

	Return type

	None

	
poetry_merge_lock.mergetool.merge(value, other)

	Merge two versions of lock data.

This function returns a TOML document with the following merged entries:

	package

	metadata.files

Any other entries, e.g. metadata.content-hash, are omitted. They are
generated from pyproject.toml when the lock data is written to disk.

	Parameters

	
	value (tomlkit.toml_document.TOMLDocument) – Our version of the lock data.

	other (tomlkit.toml_document.TOMLDocument) – Their version of the lock data.

	Returns

	The merged lock data.

	Return type

	tomlkit.toml_document.TOMLDocument

	
poetry_merge_lock.mergetool.merge_locked_package_files(value, other)

	Merge two TOML tables containing package files.

	Parameters

	
	value (tomlkit.items.Table) – The package files in our version of the lock file.

	other (tomlkit.items.Table) – The package files in their version of the lock file.

	Returns

	The package files obtained from merging both versions.

	Raises

	MergeConflictError – The tables contain different files for the same package.

	Return type

	tomlkit.items.Table

	
poetry_merge_lock.mergetool.merge_locked_packages(value, other)

	Merge two TOML arrays containing locked packages.

	Parameters

	
	value (List[tomlkit.items.Table]) – The packages in our version of the lock file.

	other (List[tomlkit.items.Table]) – The packages in their version of the lock file.

	Returns

	The packages obtained from merging both versions.

	Raises

	MergeConflictError – The lists contain different values for the same package.

	Return type

	List[tomlkit.items.Table]

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/cjolowicz/poetry-merge-lock]

	Documentation [https://poetry-merge-lock.readthedocs.io/]

	Issue Tracker [https://github.com/cjolowicz/poetry-merge-lock/issues]

	Code of Conduct [https://poetry-merge-lock.readthedocs.io/codeofconduct.html]

How to report a bug

Report bugs on the Issue Tracker [https://github.com/cjolowicz/poetry-merge-lock/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/cjolowicz/poetry-merge-lock/issues].

How to set up your development environment

You need Python 3.6+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session,
or the command-line interface:

$ poetry run python
$ poetry run poetry-merge-lock

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/cjolowicz/poetry-merge-lock/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

You can ensure that your changes adhere to the code style by reformatting with Black [https://black.readthedocs.io/]:

$ nox --session=black

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at mail@claudiojolowicz.com. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 2.0,
available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

MIT License

Copyright © 2020 Claudio Jolowicz

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

The software is provided “as is”, without warranty of any kind, express or
implied, including but not limited to the warranties of merchantability,
fitness for a particular purpose and noninfringement. In no event shall the
authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from,
out of or in connection with the software or the use or other dealings in the
software.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 poetry_merge_lock	

 	
 	
 poetry_merge_lock.__main__	

 	
 	
 poetry_merge_lock.core	

 	
 	
 poetry_merge_lock.mergetool	

 	
 	
 poetry_merge_lock.parser	

Index

 Symbols
 | A
 | C
 | L
 | M
 | P
 | S
 | T
 | U

Symbols

 	
 	
 --help

 	command line option

 	
 --print-content-hash

 	command line option

 	
 	
 --version

 	command line option

A

 	
 	activate_dependencies() (in module poetry_merge_lock.core)

C

 	
 	
 command line option

 	--help

 	--print-content-hash

 	--version

L

 	
 	load() (in module poetry_merge_lock.core)

 	
 	load_packages() (in module poetry_merge_lock.core)

 	load_toml_versions() (in module poetry_merge_lock.core)

M

 	
 	merge() (in module poetry_merge_lock.mergetool)

 	merge_lock() (in module poetry_merge_lock.core)

 	merge_locked_package_files() (in module poetry_merge_lock.mergetool)

 	merge_locked_packages() (in module poetry_merge_lock.mergetool)

 	MergeConflictError

 	
 	
 module

 	poetry_merge_lock.__main__

 	poetry_merge_lock.core

 	poetry_merge_lock.mergetool

 	poetry_merge_lock.parser

P

 	
 	parse() (in module poetry_merge_lock.parser)

 	parse_line() (in module poetry_merge_lock.parser)

 	parse_lines() (in module poetry_merge_lock.parser)

 	
 poetry_merge_lock.__main__

 	module

 	
 	
 poetry_merge_lock.core

 	module

 	
 poetry_merge_lock.mergetool

 	module

 	
 poetry_merge_lock.parser

 	module

S

 	
 	save() (in module poetry_merge_lock.core)

 	
 	State (class in poetry_merge_lock.parser)

T

 	
 	Token (class in poetry_merge_lock.parser)

 	
 	tokenize() (in module poetry_merge_lock.parser)

U

 	
 	UnexpectedTokenError

 nav.xhtml

 Table of Contents

 		
 poetry-merge-lock

_static/file.png

_static/minus.png

_static/plus.png

